Heterogeneous Unsupervised Cross-domain Transfer Learning
نویسندگان
چکیده
Transfer learning leverages the knowledge in one domain – the source domain – to improve learning efficiency in another domain – the target domain. Existing transfer learning research is relatively well-progressed, but only in situations where the feature spaces of the domains are homogeneous and the target domain contains at least a few labeled instances. However, transfer learning has not been well-studied in heterogeneous settings with an unlabeled target domain. To contribute to the research in this emerging field, this paper presents: (1) an unsupervised knowledge transfer theorem that prevents negative transfer; and (2) a principal angle-based metric to measure the distance between two pairs of domains. The metric shows the extent to which homogeneous representations have preserved the information in original source and target domains. The unsupervised knowledge transfer theorem sets out the transfer conditions necessary to prevent negative transfer. Linear monotonic maps meet the transfer conditions of the theorem and, hence, are used to construct homogeneous representations of the heterogeneous domains, which in principle prevents negative transfer. The metric and the theorem have been implemented in an innovative transfer model, called a Grassmann-LMM-geodesic flow kernel (GLG), that is specifically designed for knowledge transfer across heterogeneous domains. The GLG model learns homogeneous representations of heterogeneous domains by minimizing the proposed metric. Knowledge is transferred through these learned representations via a geodesic flow kernel. Notably, the theorem presented in this paper provides the sufficient transfer conditions needed to guarantee that knowledge is transferred from a source domain to an unlabeled target domain with correctness. To evaluate the model, five public datasets were reorganized into ten heterogeneous unsupervised transfer learning tasks across three applications: cancer detection, credit assessment, and text classification. The experiments demonstrate that the proposed approach delivers superior performance over the current benchmarks.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملHybrid Heterogeneous Transfer Learning through Deep Learning
Most previous heterogeneous transfer learning methods learn a cross-domain feature mapping between heterogeneous feature spaces based on a few cross-domain instance-correspondences, and these corresponding instances are assumed to be representative in the source and target domains respectively. However, in many realworld scenarios, this assumption may not hold. As a result, the constructed feat...
متن کاملLearning to cluster in order to Transfer across domains and tasks
This paper introduces a novel method to perform transfer learning across domains and tasks, formulating it as a problem of learning to cluster. The key insight is that, in addition to features, we can transfer similarity information and this is sufficient to learn a similarity function and clustering network to perform both domain adaptation and cross-task transfer learning. We begin by reducin...
متن کاملUnsupervised Cross-dataset Person Re-identification by Transfer Learning of Spatial-Temporal Patterns
Most of the proposed person re-identification algorithms conduct supervised training and testing on single labeled datasets with small size, so directly deploying these trained models to a large-scale real-world camera network may lead to poor performance due to underfitting. It is challenging to incrementally optimize the models by using the abundant unlabeled data collected from the target do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.02511 شماره
صفحات -
تاریخ انتشار 2017